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Transient Analysis of Tapered Transmission
Lines Used as Transformers for Short Pulses

Yue Ping Tang, Zheng Li, Member, IEEE, and Song Yue Tang

Abstract—The transient behavior of tapered transmission lines
is studied in detail by investigating their step responses by an
improved method of characteristics. We take interest in the first
arriving wave and following dropping process at the load end
which play important roles in determining the response waveform
and power coupling efficiency under short pulse excitation. Nu-
merical results show that, for given load and source impedances
and propagation delay, the magnitude of the first arriving wave
is invariable for any tapered line under both ends are well
matched, and the slowest dropping is reached as the characteristic
impedance distribution satisfies some condition. The concept
of instantaneous dropping speed is used in further theoretical
analysis and the numerical results are verified by theoretical
formulas. Finally, we show the relation between the instantaneous
dropping speed and frequency-domain characteristics.

I. INTRODUCTION

N MICROWAVE engineering, tapered or nonuniform trans-

mission lines are widely used as impedance transformers,
impedance matching sections, filters, resonators, etc. With the
developing of high-speed pulse technique, pulses with duration
in picosecond range have become commonplace in modern
digital systems. Frequency analysis shows that most of the
power of these short pulses lies in the waveband of microwave
and thus it is possible to apply the tapered lines as pulse
transformers in improving impedance matching [1]-[3].

Many authors have contributed to the study of tapered
lines [4]-[11]. However, most previous studies are limited
in frequency domain or in numerical simulation, thus in
most cases the time-domain characteristics of tapered lines
were not studied and depicted directly. We would like to
mention particularly that Hsue and Hechtman [9] used a
multiple-section approximating method to investigate the step
response of tapered lines and concluded that the exponential
line provided the maximum first arriving wave followed by
a decayed transition ripple to the load end and thus had
potential application in pulse transformers and pulse waveform
alteration.

In this paper, however, it is found by us that all tapered
lines can reach this maximum first arriving wave. We use
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an improved method of characteristics to investigate the step
response of tapered lines. Both numerical calculations and
theoretical analysis are carried out by this new method. The
step response is similarly divided into three parts as in [9]:
(1) the first arriving wave, (2) the dropping process, and
(3) the steady-state region. We mainly take interest in the
first arriving wave and following dropping process which
play important roles in determining the response waveform
and power coupling efficiency under short pulse excitation.
Numerical results show that, under the source and load ends
are both matched, for given source and load impedances, the
magnitude of the first arriving wave is invariable for all kinds
of tapered lines, thus we conclude that the advantage of the
exponential lines does not lies in its maximum first arriving
wave as concluded by Hsue and Hechtman [9]. Therefore,
we pay more attention to the dropping process and use the
concept of fall time to depict the time-domain characteristics of
tapered lines. Under matched condition, the numerical results
also show that, for given source and load impedances and
propagation delay, the exponential line (in electrical length)
has the slowest dropping speed and thus the maximum pulse
power coupling efficiency and the larger the width of the
exciting pulse is (as compared with the fall time), the lower
the power coupling efficiency is. The behavior of a tapered
line approaches the behavior of an ideal transformer as its
fall time is larger than the width of the excitation pulse
and with the load end mismatched, the behavior worsens.
Instantaneous dropping speed at the start of the response is
used in further theoretical analysis and theoretical formulas
are derived for calculating the fall time and the numerical
results are verified by them. Finally, the relation between the
instantaneous dropping speed and corresponding frequency
characteristics is revealed.

II. THEORY

Transmission lines (under quasi-TEM mode approximation)
are governed by the following standard equations [7], [8]

ov oI
- — +RI=0 1
aw1+Lat1+ (1a)
oV o1

o4 2L = 1b
Cat1+8x1+GV 0 (1b)

where C(z1), L(z1), R(z1), G(x1) are the capacitance, in-
ductance, resistance, and conductance per unit length, respec-
tively. The propagation speed and characteristic impedance
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are, respectively, given by

Ps(z1) = 1/v/L(21)C(21) = ¢/ /et (1)

Z(z1) = v/ L(21)/C(m1)

where eeg(z1) is the effective permittivity and ¢ denotes
velocity of light in free space. In this paper, we deal with
tapered line which Z(x;) varies continuously along the
direction. As a matching section for short pulses, the tapered
line itself is short in length and the influence of R(z;) and
G(z1) is negligible. Also, for the convenience of theoretical
analysis, it is assumed that the propagation speed as well
as the characteristic impedance is independent of frequency,
which means that no dispersion is considered. This is an
effective approximation especially under the excitation pulse
is relatively wide and the length of the line is short enough.
Therefore, equation (la) and (1b) become

oV oI
—+Z—=0 2

Ps (9%‘1 + 8t1 ( a)
oV oI

—+P,Z— =0. 2b

oty + Oz, (2b)

We use the following transformations as used in 8]
1% 1%
=—=+1VZ =— - IVZ. 3
r=7z =7 ®)

Also, assuming the physical length of the tapered line is /,
normalized spatial and temporal coordinates are introduced by

d.CCl

wz/o Xe) /Td t=1t/Ty )
dil]‘l

n‘ﬂ&wn

is the propagation delay time. It is to be noted that the z
coordinate is proportional to the so-called electrical length.
Then equations (2a) and (2b) become

dqg 0Oq 1d(nZ)

ot oz 2 dz

where

(5a)

op  op _ 1d(nZ)

ot  Ox 2 dzx

In new coordinates, the length and propagation delay time are
both 1.0 and the solution space is defined by 0 < ¢ < oo,
0<z <1

Equations (5a) and (5b) are of the hyperbolic type and
the characteristic lines are ¢ — x = constant and ¢t + z =
constant. The characteristic lines suggest new coordinates as
£ =1t+z,n=1—x so that £ = constant, n = constant
are the characteristic lines. We transform (5a) and (5b) to &,
1 coordinates to get

dg _ 19(nz)

(5b)

on 2 On (62)
?f_ _ 1 d(ln 7)
ot 2 B¢ (6b)
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Fig. 1. A new discretization scheme (N = 10, Az = 1/10, At = 1/5).

From (6a) and (6b), (5a) and (5b) can be numerically solved
by the method of characteristics as used in [7]. However, here
we apply the method of characteristic with a new discretization
scheme which is illustrated in Fig. 1.

Letting Az = 1/N and At = 2/N, where N is an integer,
we consider the lines t —z = 1At 4 = -1,0,...) and
z = jAz (§ = 0,1,...,N). The point of intersection of
t —z =1 At and = j Ag is designated as (¢, 7). Then, for
i > —1,0 < j < N, the point X (4, §) is connected to the point
A(i—1, 7 + 1) through the characteristic line £ = (i + §) At
and to the point B(¢, j — 1) through the characteristic line
1n = tAt, respectively. Equation (6a) is integrated along
line £ = (4 + j) At from A to X and (6b) is integrated along
line n = ¢ At from B to X, respectively. Then, we get the

following

; 1 ™% 9(InZ)

J 7+1

q —q,_ =—~f p——dn (7a)

1 2 - an
L 1 /%% 8(InZ)
pl—-pl 7l = ——/ d (7b)
2 )., U oe ¢

where ¢, pz stand for the value of p,q at (¢, j). The trape-
zoidal rule

/ac—i—Aw df(.'l))

dx

o(z) dx = 3 lo(x) + g(x + A)
[f(z + Az) - f(2)] + o(Az?)

is used to evaluate the integrals so that (7a) and (7b) become

; 1 5 Z(§ Az)
J_ g+l .3 J+1 2
% = — 7 +pil) o G ) An) + o(Az?) (8a)
i1 1 i Z(j Ax)
J = ) 1_- J J 1 ] 2
pvi=p, —l@d+q ) 7 = 1) A To(A?) (8D)

where o(Axz?) represents a higher order infinitesimal than Az?
as Az — 0.
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Fig. 2. A tapered line used as a matching section.
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For a sufficiently large value of N, the higher order infini-
tesimal terms are negligible. Assuming that the value of p, ¢
is known at A and B, we can evaluate p, g at X by using
(82) and (8b). However, at the two ends of the tapered line
which implies j = 0 or j = N, one of (8a) and (8b) must be
discarded and replaced by corresponding boundary condition
equation. In the special case of zero initial values of V' (x4, ¢1)
and I(zy, t1), both p(t, z) and ¢(¢, =) are zero until ¢ > x
[7]. Thus we have

P.=0,¢,=0(=0,1,---,N). ©)

Then, by using (8a), (8b), and (9) and the boundary conditions,
we can evaluate

p‘(7)a Q6(.7 :=0, 1’7N)
and so on and so forth we can evaluate

Practical calculations indicate that, as an algorithm, this new
discrezation scheme makes numerical calculations more ef-
ficient than the conventional scheme as used in [7]. Further
theoretical analysis is also based on it.

III. NUMERICAL RESULTS

Tapered line as a pulse transformer between the source and
load is illustrated in Fig. 2. Rs and Ry denote the source
and load impedances. Zg and Zj denote the characteristic
impedance of the tapered line at the source and load ends. Vg
is the voltage source signal. Only the special case of Rg and
Ry, being purely resistive is considered in this paper.

In Fig. 2, the boundary conditions at the source and load
ends of the tapered line are V+IRg = Vgand V—-R;I =0,
respectively. Letting o = (Zs — Rg)/(Zs + Rg) and b =
(Zr - R1p)/(Zr.+ Ry), by using (3), the boundary conditions
become

V.

p+ag = (1+a)\/;_5 (10a)

bp+qg=0. (10b)

Also by using (3), the unit delayed output waveform V; at
the load end is

. 1
V(L +1iAt) = §(P£V+qu)v Zy.

In Fig. 3, we show the numerical unit step responses for
different Z(z) distributions under Rg = 5002, Ry = 5},

an
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Fig. 3. The unit step response waveforms under Rs = 5092, Ry = 512,
a = 0, b = 0. 1: Exponential line (Z(z) = 50.0exp(—2.3026z)),
2: Bessel line 1 (Z(x) = 10.69(z + 0.4625)~2), 3: parabolic line
(Z(z) = 50.0 — 135.0x2 + 90.0x3), 4: Bessel line 2 (Z(z) = 5.025(x +
0.0101)~1/2), 5: hyperbolic line (Z(z) = 27.5 —22.5 tanh (10.0 — 5.0z)).

a = 0, b = 0. The condition of ¢ = 0 and b = 0 means that
the source and load ends are well matched.

The numerical results show that, for all tapered lines, the
magnitude of the first arriving voltage reaches the same mag-
nitude as ideal transformer is used, which is (5/50)1/2/2 ~
0.158, while the dropping speed varies for different lines. The
duration for Vz, to decrease to 90% of the first arriving voltage
is defined as fall time which is designated as 7. The values
of T are also given in Fig. 3.

Ty is an important parameter concerning the time domain
characteristics of the tapered lines. It is predicated that, as a
pulse transformer, the tapered line is effective only under the
excitation is short pulses with duration smaller or not very
larger than T and a larger T is always expected for better
pulse power coupling efficiency. The behavior of a tapered
line approaches the behavior of an ideal transformer as its fall
time is larger than the width of the excitation pulse. So far
as our numerical results show, for a given Ty, T gets the
maximum value as Z(z) is an exponential distribution. Thus,
we conclude that the advantage of the exponential line (in
electrical length) lies in its maximum fall time instead of its
maximum first arriving wave as predicted in [9]. By increasing
T4, we can also increase Ty, which means increasing [ or
decreasing Ps of the tapered line. In [2], high-dielectric
constant material is used to get a lower propagation speed
to decrease the total length of the TLT.

In Fig. 4, we show the corresponding numerical responses
under a Gaussian pulse excitation. The width (at the half
magnitude points) and peak voltage of the Gaussian pulse is,
respectively, 0.25Ty and 1 V. We can see that, the width of the
response pulses is almost equal to the width of the excitation
pulse and the peak voltages eaches the maximum as Z(x) is
an exponential distribution. In Fig. 5, we show the two curves
of output pulse peak voltage and pulse width ratio of output
to input as the width of the exciting Gaussian pulse changes
from 0.3T7 to 18T%, under Rg = 50Q0, Ry = 50, a = 0,
b =0 and Z(z) is an exponential distribution. It is easy to see
that, as the width of the excitation pulse approaches to 18T},
the tapered line is more and more ineffective.
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Fig. 4. Corresponding response waveforms under a Gaussian pulse excita-
tion.

ot 098 5
s 01eR E g
@ 045k — 1 Peakvaitage 3 897 Z
@ 015F curve Joss £
3 - \\ — 2 Puise wicth ratio] [
r rve
2 oraf | cu Jo95 2
5 b  Joes 3
E o18f | {ge 2
3 . jos
i L 3
% o4z} 4 092 g
I.I.I b p
2 onf 108 §
= 3
9 oif Low
> o 3 089 E
05_0'09. et 088 9
0 2 4 6 8 10 12 14 16 18 20 D

INPUT PULSE WIDTH(TY)

Fig. 5. Output pulse peak voltage and pulse width ratio of output to input
as the width of the excitation Gaussian pulse changes.

In some cases, for example, if the load is a low impedance
laser diode, it is very difficult for Z;, to be equal to Ry [3].
This is equivalent to b # 0. In Fig. 4, we show the numerical
unit step responses for b # 0, assuming Z(z) is an exponential
distribution and Rg = 502, R, = 5, a = 0.

We can see that, as |b| increases, the magnitude of the first
arriving voltage decreases and the dropping speed changes.
With the load end mismatched, the behavior of the tapered
line as a pulse transformer worsens.

IV. FURTHER THEORETICAL INVESTIGATION

In this section, theoretical analysis is carried out to verify
the preceding numerical results.

Assuming M is the magnitude of the step source and
a = 0, we consider (7a) and (7b) together with the boundary
conditions (10a) and (10b). By using the following rule

/m+Aw M

2 g(w)do = g(@)lf (@ + Aw) ~ £(2)] + o(Aa)

to evaluate the integral in (7a) and the trapezoidal rule to
evaluate the integral in (7b), we have

1 Z(j Ax
gt - §Pz+11 In ﬁ%&j +o(Ax)
' for j =0,
7=\ (122)
forj=N
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M/VZs
o for j =0 .
i 1 j j—1 j Az
P - +d W +o(Az?)
for j :17 2,---,N
(12b)

Let ¢ = 0, making use of (9) and taking the limit Az — 0,
we can easily get

i 0 forj=0,1,---,N—-1
J [ Rab ’
%= {—bM/w/ZS for j = N (132)
=M/\/Zs forj=0,1,---,N. (13b)
By using (11), we get
1 5 [Br
Vp(1.0) = (Po + W7 = ~2~M 1-5 Rs' (14)

In case of b = 0, it is the very result as Hsue and Hechtman
[9] have obtained in the special case of exponential lines.
The above formula shows that the first arriving voltage is
independent of Z(x) distribution and it reduces as b # 0.

Now, substituting 1 into (12a) and (12b), by using
(13a) and (13b) we obtain

( Z(j Az)

—3 7 Bz ag + o(A0)
for y =0, 1,~-,NZ—( A
. M1 _ZAz)
¢ = bféﬁ’— C vt A HoAT) sy
~bp]
( forj=N
(M/VZs
pj ) forj=0
= i1 Z{(j Az
1 p-{ — —(ql + ql )ln ‘Z—((]-(—J_—i—)——A):—n—)- + O(Aw?)
| forj=1,2,.---,N.
(15b)

By substituting (15a) into (15b) and using the following
formula

In f(a;f—(kx)Am) = dj;(;) f(lm) Az + o(Ax)
after some manipulations on infinitesimal we obtain
p = \/A;[—S - \/%Jgrz(j Az) Az®
+ %b \/]\%rgr(l.ﬂ) Az + o(Ax)
where
r(z) = dZ(z) 1
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is the differential reflection coefficient distribution [5]. By
using (11), we have

Vi (1 + At)
. v A N1
= -VZ(1-b) | —== — == > _r*(j Az) Az?
2\/_2( )\/75 \/Z_SJZ;:T (7 Az) Az
+ %b\/—]g_;r(l.(]) Az + O(A:L‘)] . (16)

The dropping speed is approximately described by the
instantaneous dropping speed at ¢ = 1 which is
VL(l + At) - VL(l.O) 1

At Vi(1.0)

By substituting (14) and (16) into (17) and noting the higher
order infinitesimal is negligible and At = 2 Az, we obtain

Df = lim
At—0

‘. 17)

3b 1/t
Dy = |=r(1.0) - —/ 72(z) da|. (18)
2 2 Jo
In the special case of b = 0, we get
1 1
D; = —/ r2(z) dz. (19)
2Jo

By applying the following theorem

(/Olf(x)g(l’) d:r)2 < /Olfz(x) dx/01g2(m) d

under b = 0, we have

1/, 1/ 1 VA A
Df—é/or(x)/o 1dx2§(/0 r(a:)dw) _g(an_s)'

(20)

The equality holds only if 7(z) = constant is satisfied, which
means Z () is an exponential distribution. By using (4), Z (1)
is given as following

Z(z1) = crexp (02/011 YJ%)

where ¢; and ¢y are undetermined constants. Therefore, expo-
nential lines (in electrical length) have the minimum Dy for
given Zg and Zj,.

The numerical results are verified by the above theoretical
analysis. Assuming the dropping near ¢ = 1 is nearly linear,
the following approximate relation is easily obtained

T
Ty 2 012

Dy 21

In the special case of exponential lines, it turns into

0.8T,
Ty R -
In (ZL/Zs)
Under Zg = 509, Z; = 5Q, we have Ty =~ 0.1517;. The
relative error is 6.6% as compared with the numerical result
in Fig. 3. The TLT described in [1] is assumed to be an
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Fig. 6. Step response waveforms for b # 0.

exponential line and the effective permittivity is invariably
10.0 along its length for its unconventional structure. Iis total
length is 50 mm, so T = 527 ps. Therefore, under Zg = 5012,
Zr = 5.5Q,a =0, b =0, we have Ty ~ 86 ps.

V. FREQUENCY-DOMAIN CONSIDERATION

In microwave, tapered lines are often characterized by the
input reflection coefficient as a function of frequency. Under
p € 1,a = 0, b = 0 and the propagation speed Ps
is a constant, the following approximate formula is used to
calculate the reflection coefficient [4], [5]

o) = /0 () exp (‘—34;55—”’—) dzs

where r(z;) is the differential reflection coefficient distribution
and [ is the length of the tapered line. By the transformation
of £ = 21/l and f = 2f1Ty, it becomes

(22

o) = [ r(o)exp (~j2nfz) de

By applying Parseval theorem we obtain

—+oo 1
| ki = [ r@ds =20

-0

(23)

which show the relation between D and the frequency domain
characteristics. Under Ps is not a constant, by (3), (2a) and
(2b) can always be equivalently transformed into equations
with invariable Ps (=1.0). Thus, (23) is still effective.

By (23), the minimum Dy of the exponential line implies
that the left of (23) have the minimum value. In Fig. 7,
we show the input reflection coefficient curve of different
lines under Zg = 50Q, Zr = 150Q, o = 0, b = 0O,
which is calculated by processing the corresponding step
response waveforms by FFT. In Fig. 7, the minimum Dy of
the exponential line is obvious.

V1. CONCLUSION

The above detailed analysis of the transient phenomena on
tapered lines has shown that tapered lines can be used as
pulse transformers for short pulses and the difference between
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Fig. 7. Input reflection coefficient of different tapered lines under
Zg = 50Q, Zy, = 1500, a = 0, b = 0. 1: Exponential line

(Z(x) = 50.0 exp (1.09862)), 2: Bessel line 1 (Z(z) = 26.8(1.366+z)2),
3: parabolic line (Z(z) = 50.0 + 300.022 — 200.0;1:3), 4: Bessel line 2
(Z(z) = 141.42(z + 0.125)/2), 5: hyperbolic line (Z(z) = 100.0 +
50.0 tanh (10.0z — 5.0)).

different lines lies in the dropping speed instead of the first
arriving wave. By using the instantaneous dropping speed to
describe the dropping behavior, we successfully find a useful
formula for calculating the fall time. Both the numerical results
and theoretical analysis show that, the exponential line (in
electrical length) provides the slowest dropping and thus in
view of the power coupling efficiency it is the optimum tapered
line pulse transformer. It is to be noted that, dispersion is
not considered in this paper and further investigation of the
step responses should take account of the effect of dispersion,
in which case the performance of a tapered line as a pulse
transformer may worsen. Also, the performance of a tapered
line worsens if the load end is not completely matched. Finally,
we reveal the relation between the instantaneous dropping
speed and frequency domain characteristics.
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